Singleton Theorem Using Models

Srivathsan B, Igor Walukiewicz

LaBRI

Paris, March 2010

Introduction

Singleton Theorem [Statman'82]

For every lambda term M, there exists a finite standard model \mathcal{D} and a variable assignment v such that M is uniquely determined in \mathcal{D} and v.

Motivation: Standard models are strong enough to identify single terms (up to β , η -reductions).

Method: Construction of \mathcal{D} for M by induction on the Böhm tree of M.

Simply typed λ terms

Types τ

$\tau ::= \mathbf{0} \mid \tau \to \tau$

Terms

- Variables: $x^{\alpha}, y^{\alpha}, \dots$
- λ -abstraction: $\lambda x^{\alpha}.M^{\beta}$
- Application: $MN : \beta$; if $M : \alpha \rightarrow \beta$ and $N : \alpha$

Remarks

- We can have more than one basic type.
- Constants can be added without any problems.

Standard Models

Standard Finite Model $\mathcal{D} = (D_{\alpha})_{\alpha \in \tau}$

- D_0 : a finite set of elements of the basic type.
- $D_{\alpha \to \beta}$: the set of functions from D_{α} to D_{β} .

Variable assignment

A variable assignment is a function v associating to a variable of type α an element of D_{α} .

Notation: $v[d/x^{\alpha}]$.

Interpretation

Interpretation

Interpretation of a term M of type α in a model \mathcal{D} and variable assignment $v \llbracket M \rrbracket_{\mathcal{D}}^{v} \in D_{\alpha}$:

- $\llbracket x^{\alpha} \rrbracket_{\mathcal{D}}^{\mathsf{v}} = \mathsf{v}(x^{\alpha})$
- $\llbracket MN \rrbracket_{\mathcal{D}}^{\mathsf{v}} = \llbracket M \rrbracket_{\mathcal{D}}^{\mathsf{v}} \llbracket N \rrbracket_{\mathcal{D}}^{\mathsf{v}}$
- $[\![\lambda x^{\alpha}.M]\!]_{\mathcal{D}}^{v}$ is a function mapping an element $d \in D_{\alpha}$ to $[\![M]\!]_{\mathcal{D}}^{v[d/x^{\alpha}]}$
- β -reduction $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$.
- η -reduction $\lambda x.Mx \rightarrow_{\eta} M$, provided x is not free in M.

$\eta\text{-long}$ form

Using λ to make the functions explicit:

$$\lambda x^{\alpha} . z^{\alpha \to \beta} x$$
 instead of $z^{\alpha \to \beta}$

Böhm Trees

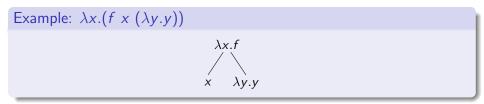
Observe that a term in a β -normal, and η -long form is of a shape:

 $\lambda \overrightarrow{x} . z M_1 \dots M_k,$

where z is a variable, $zM_1 \dots M_k$: 0, and the sequence $\lambda \overrightarrow{x}$ may be empty.

Böhm Trees

If $M = \lambda \overrightarrow{x} . z M_1 ... M_k$, then the root of BT(M) is labeled $\lambda \overrightarrow{x} . z$ and has $BT(M_1), ..., BT(M_k)$ as its children.



Remark

BT(M) is a particular way of representing terms in a normal form as a tree.

Statement of the Theorem

Uniquely determined

M is said to be *uniquely determined* in a model \mathcal{D} with a variable assignment v if for all lambda terms N, $[\![N]\!]_{\mathcal{D}}^v = [\![M]\!]_{\mathcal{D}}^v$ iff $N =_{\beta\eta} M$.

Singleton Theorem [Statman'82]

For every lambda term M, there exists a standard finite model \mathcal{D} and a variable assignment v such that M is uniquely determined in \mathcal{D} and v.

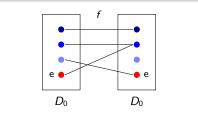
- We consider a lambda term M in η -long normal form.
- We assume that we have a model \mathcal{D} and an interpretation in which all subterms of M are uniquely determined.
- We add "an element" to \mathcal{D} , and alter the interpretation to make M uniquely determined too.

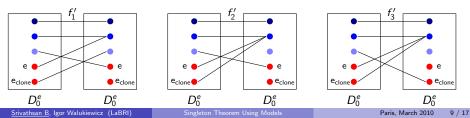
The Extended Model

 $\mathsf{Model}\ \mathcal{D}^{e}$

Given a model $\mathcal{D} = (D_{\alpha})_{\alpha \in \tau}$ and an element $e \in D_0$ the extended model $\mathcal{D}^e = (D^e_{\alpha})_{\alpha \in \tau}$ is determined by:

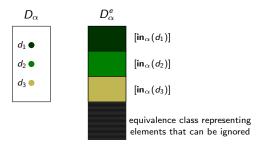
 $D_0^e = D_0 \uplus \{e_{clone}\}$





Visualizing a set D^e_{α}

In general, we would like to visualize each set D^e_{α} as follows

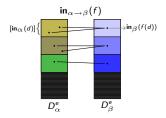


- \mathbf{in}_{α} represents the injection function, and
- [d'] denotes the equivalence class of $d' \in D^e_{lpha}$.

A null element h_0 is any arbitrary element of D_0^e different from e_{clone} . For a type $\alpha \to \beta$, element $h_{\alpha \to \beta}$ is the constant function mapping every element to h_{β} .

Definition \mathbf{in}_0 and \leftrightarrow_0

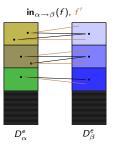
- $\mathbf{in}_0: D_0 \to D_0^e$ is the identity.
- \leftrightarrow_0 is the smallest equivalence containing $e \leftrightarrow_0 e_{clone}$.



Definition $\mathbf{in}_{\alpha \to \beta}$

• If $f \in D_{\alpha \to \beta}$ then $in_{\alpha \to \beta}(f)$ is $f' \in D^{e}_{\alpha \to \beta}$ such that:

$$f'(d') = egin{cases} {f in}_eta(f(d)) & ext{ if } d' \in [{f in}_lpha(d)] \ h_eta & ext{ otherwise} \end{cases}$$



Equivalence relation

• We say that $f' \in D^{e}_{\alpha \to \beta}$ simulates $f \in D_{\alpha \to \beta}$ (sim(f', f)) if for all $d \in D_{\alpha}$, for all $d' \in [in_{\alpha}(d)]$: $f'(d') \leftrightarrow_{\beta} in_{\beta}(f(d))$

• For
$$f',g'\in D^e_{lpha
ightarrow eta}$$
, we have

$$f' \leftrightarrow_{\alpha \to \beta} g'$$
 if for all $h \in D_{\alpha \to \beta}, \ sim(f', h) \Leftrightarrow sim(g', h).$

Observation

For every $d_1, d_2 \in D_{\alpha}$, if $d_1 \neq d_2$, then $in_{\alpha}(d_1) \nleftrightarrow_{\alpha} in_{\alpha}(d_2)$.

Definition

A variable assignment v' on \mathcal{D}^e simulates a variable assignment v on \mathcal{D} if for all variables x: sim(v'(x), v(x)).

Lemma

If v' simulates v then for every lambda term M:

 $sim(\llbracket M \rrbracket_{\mathcal{D}^e}^{v'}, \llbracket M \rrbracket_{\mathcal{D}}^v)$

where α is the type of *M*.

Corollary

Every term uniquely determined in (\mathcal{D}, v) is uniquely determined in (\mathcal{D}^e, v') .

Proof of the Singleton Theorem

Consider a lambda term $\lambda \overrightarrow{x}. yM_1 \dots M_k$, with $yM_1 \dots M_k$ of type 0.

Assume

- M_1, \ldots, M_k are uniquely determined in a model \mathcal{D} and a variable assigment v,
- $\llbracket yM_1 \dots M_k \rrbracket_{\mathcal{D}}^v = e.$

Construct the model \mathcal{D}^e by adding e_{clone} .

Variable assignment v^e

1
$$v^{e}(x) = in_{\tau(x)}(v(x))$$
, if $x \neq y$.

For the variable y,

$$v^{e}(y)(d'_{1},\ldots,d'_{k}) = \begin{cases} e_{clone} & \text{if } d'_{i} \in [\mathbf{in}_{\beta_{i}}(\llbracket M_{i} \rrbracket_{\mathcal{D}}^{v})], \\ & \text{for } i \in \{1,\ldots,k\} \\ \mathbf{in}_{\tau(y)}(v(y))(d'_{1},\ldots,d'_{k}) & \text{otherwise} \end{cases}$$

As v^e simulates v we have:

- For all lambda terms N, $sim(\llbracket N \rrbracket_{\mathcal{D}^e}^{v^e}, \llbracket N \rrbracket_{\mathcal{D}}^{v})$, that is, $\llbracket N \rrbracket_{\mathcal{D}^e}^{v^e} \leftrightarrow_{\beta_i} in_{\beta_i}(\llbracket N \rrbracket_{\mathcal{D}}^{v})$
- So M_1, \ldots, M_k are uniquely determined in (\mathcal{D}^e, v^e)
- Moreover, $\llbracket yM_1 \dots M_k \rrbracket_{\mathcal{D}^e}^{v^e} = e_{clone}$.

Uniqueness

Let
$$\llbracket wN_1 \dots N_p \rrbracket_{\mathcal{D}^e}^{v^e} = e_{clone}$$
.

- $w \neq y$ is not possible.
- when w = y we get:

$$\begin{split} \llbracket N_i \rrbracket_{\mathcal{D}^e}^{v^e} &\in [\operatorname{in}_{\beta_i}(\llbracket M_i \rrbracket_{\mathcal{D}}^v)] \\ \Rightarrow \operatorname{in}_{\beta_i}(\llbracket N_i \rrbracket_{\mathcal{D}}^v) \leftrightarrow_{\beta_i} \operatorname{in}_{\beta_i}(\llbracket M_i \rrbracket_{\mathcal{D}}^v) \\ \Rightarrow \llbracket N_i \rrbracket_{\mathcal{D}}^v &= \llbracket M_i \rrbracket_{\mathcal{D}}^v \\ \Rightarrow N_i &= M_i \end{split}$$

 $yM_1 \dots M_k$ uniquely determined implies $\lambda \overrightarrow{x} . yM_1 \dots M_k$ is uniquely determined.

Base Case

Leaf is a variable z of type 0.

- Start: trivial model with only one element $\{\bot\}$ in its atomic set, trivial variable assignment.
- Add an extra element $\{\perp_{clone}\}$ to type 0.
- New variable assignment assigns z to \perp_{clone} and the rest is kept same.

Conclusions

- In our approach we
 - define an operation of model extension, and
 - explain the relation between elements of the initial and extended model.
- We work mostly with semantics, the only syntactic tool is η -long forms (and Böhm trees).

Related Work:

- [Statman'82] Finite Completeness Theorem
- [Statman & Dowek'92]
- [Salvati'07] Using intersection types