Singleton Theorem Using Models

Srivathsan B, Igor Walukiewicz
LaBRI

Paris, March 2010

Introduction

Singleton Theorem [Statman'82]

For every lambda term M, there exists a finite standard model \mathcal{D} and a variable assignment v such that M is uniquely determined in \mathcal{D} and v.

Motivation: Standard models are strong enough to identify single terms (up to β, η-reductions).
Method: Construction of \mathcal{D} for M by induction on the Böhm tree of M.

Simply typed λ terms

Types τ

$$
\tau::=0 \mid \tau \rightarrow \tau
$$

Terms

- Variables: $x^{\alpha}, y^{\alpha}, \ldots$
- λ-abstraction: $\lambda x^{\alpha} \cdot M^{\beta}$
- Application: $M N: \beta$; if $M: \alpha \rightarrow \beta$ and $N: \alpha$

Remarks

- We can have more than one basic type.
- Constants can be added without any problems.

Standard Models

Standard Finite Model $\mathcal{D}=\left(D_{\alpha}\right)_{\alpha \in \tau}$

- D_{0} : a finite set of elements of the basic type.
- $D_{\alpha \rightarrow \beta}$: the set of functions from D_{α} to D_{β}.

Variable assignment

A variable assignment is a function v associating to a variable of type α an element of D_{α}.

Notation: $v\left[d / x^{\alpha}\right]$.

Interpretation

Interpretation

Interpretation of a term M of type α in a model \mathcal{D} and variable assignment v $\llbracket M \rrbracket_{\mathcal{D}}^{v} \in D_{\alpha}:$

- $\llbracket x^{\alpha} \rrbracket_{\mathcal{D}}^{v}=v\left(x^{\alpha}\right)$
- $\llbracket M N \rrbracket_{\mathcal{D}}^{\vee}=\llbracket M \rrbracket_{\mathcal{D}}^{v} \llbracket N \rrbracket_{\mathcal{D}}^{v}$
- $\llbracket \lambda x^{\alpha} \cdot M \rrbracket_{\mathcal{D}}^{v}$ is a function mapping an element $d \in D_{\alpha}$ to $\llbracket M \rrbracket_{\mathcal{D}}^{v\left[d / x^{\alpha}\right]}$.
- β-reduction $(\lambda x . M) N \rightarrow{ }_{\beta} M[N / x]$.
- η-reduction $\lambda x . M x \rightarrow{ }_{\eta} M$, provided x is not free in M.

η-long form

Using λ to make the functions explicit:

$$
\lambda x^{\alpha} \cdot z^{\alpha \rightarrow \beta} x \quad \text { instead of } \quad z^{\alpha \rightarrow \beta}
$$

Böhm Trees

Observe that a term in a β-normal, and η-long form is of a shape:

$$
\lambda \vec{x} . z M_{1} \ldots M_{k}
$$

where z is a variable, $z M_{1} \ldots M_{k}: 0$, and the sequence $\lambda \vec{x}$ may be empty.

Böhm Trees

If $M=\lambda \vec{x} \cdot z M_{1} \ldots M_{k}$, then the root of $B T(M)$ is labeled $\lambda \vec{x} \cdot z$ and has $B T\left(M_{1}\right), \ldots, B T\left(M_{k}\right)$ as its children.

Example: $\lambda x .(f x(\lambda y \cdot y))$

Remark

$B T(M)$ is a particular way of representing terms in a normal form as a tree.

Statement of the Theorem

Uniquely determined

M is said to be uniquely determined in a model \mathcal{D} with a variable assignment v if for all lambda terms $N, \llbracket N \rrbracket_{\mathcal{D}}^{\vee}=\llbracket M \rrbracket_{\mathcal{D}}^{\vee}$ iff $N={ }_{\beta \eta} M$.

Singleton Theorem [Statman'82]

For every lambda term M, there exists a standard finite model \mathcal{D} and a variable assignment v such that M is uniquely determined in \mathcal{D} and v.

Basic Idea

- We consider a lambda term M in η-long normal form.
- We assume that we have a model \mathcal{D} and an interpretation in which all subterms of M are uniquely determined.
- We add "an element" to \mathcal{D}, and alter the interpretation to make M uniquely determined too.

The Extended Model

Model \mathcal{D}^{e}

Given a model $\mathcal{D}=\left(D_{\alpha}\right)_{\alpha \in \tau}$ and an element $e \in D_{0}$ the extended model $\mathcal{D}^{e}=\left(D_{\alpha}^{e}\right)_{\alpha \in \tau}$ is determined by:

$$
D_{0}^{e}=D_{0} \uplus\left\{e_{\text {clone }}\right\}
$$

Visualizing a set D_{α}^{e}

In general, we would like to visualize each set D_{α}^{e} as follows

- $\mathbf{i n}_{\alpha}$ represents the injection function, and
- [$\left.d^{\prime}\right]$ denotes the equivalence class of $d^{\prime} \in D_{\alpha}^{e}$.

A null element h_{0} is any arbitrary element of D_{0}^{e} different from $e_{\text {clone }}$. For a type $\alpha \rightarrow \beta$, element $h_{\alpha \rightarrow \beta}$ is the constant function mapping every element to h_{β}.

Definition $\mathbf{i n}_{0}$ and $\leftrightarrow 0$

- $\mathbf{i n}_{0}: D_{0} \rightarrow D_{0}^{e}$ is the identity.
- \leftrightarrow_{0} is the smallest equivalence containing $e \leftrightarrow_{0} e_{\text {clone }}$.

Definition $\mathbf{i n}_{\alpha \rightarrow \beta}$

- If $f \in D_{\alpha \rightarrow \beta}$ then $\mathbf{i n}_{\alpha \rightarrow \beta}(f)$ is $f^{\prime} \in D_{\alpha \rightarrow \beta}^{e}$ such that:

$$
f^{\prime}\left(d^{\prime}\right)= \begin{cases}\mathbf{i n}_{\beta}(f(d)) & \text { if } d^{\prime} \in\left[\mathbf{i n}_{\alpha}(d)\right] \\ h_{\beta} & \text { otherwise }\end{cases}
$$

Equivalence relation

- We say that $f^{\prime} \in D_{\alpha \rightarrow \beta}^{e}$ simulates $f \in D_{\alpha \rightarrow \beta}\left(\operatorname{sim}\left(f^{\prime}, f\right)\right)$ if for all $d \in D_{\alpha}$, for all $d^{\prime} \in\left[\mathbf{i n}_{\alpha}(d)\right]: f^{\prime}\left(d^{\prime}\right) \leftrightarrow_{\beta} \mathbf{i n}_{\beta}(f(d))$
- For $f^{\prime}, g^{\prime} \in D_{\alpha \rightarrow \beta}^{e}$, we have

$$
f^{\prime} \leftrightarrow_{\alpha \rightarrow \beta} g^{\prime} \quad \text { if for all } h \in D_{\alpha \rightarrow \beta}, \operatorname{sim}\left(f^{\prime}, h\right) \Leftrightarrow \operatorname{sim}\left(g^{\prime}, h\right) .
$$

Observation

For every $d_{1}, d_{2} \in D_{\alpha}$, if $d_{1} \neq d_{2}$, then $\mathbf{i n}_{\alpha}\left(d_{1}\right) \not \leftrightarrow_{\alpha} \mathbf{i n}_{\alpha}\left(d_{2}\right)$.

Definition

A variable assignment v^{\prime} on \mathcal{D}^{e} simulates a variable assignment v on \mathcal{D} if for all variables $x: \operatorname{sim}\left(v^{\prime}(x), v(x)\right)$.

Lemma

If v^{\prime} simulates v then for every lambda term M :

$$
\operatorname{sim}\left(\llbracket M \rrbracket_{\mathcal{D}^{e}}^{\vee^{\prime}}, \llbracket M \rrbracket_{\mathcal{D}}^{\vee}\right)
$$

where α is the type of M.

Corollary

Every term uniquely determined in (\mathcal{D}, v) is uniquely determined in $\left(\mathcal{D}^{e}, v^{\prime}\right)$.

Proof of the Singleton Theorem

Consider a lambda term $\lambda \vec{x} \cdot y M_{1} \ldots M_{k}$, with $y M_{1} \ldots M_{k}$ of type 0 .

Assume

- M_{1}, \ldots, M_{k} are uniquely determined in a model \mathcal{D} and a variable assigment v,
- $\llbracket y M_{1} \ldots M_{k} \rrbracket_{\mathcal{D}}^{v}=e$.

Construct the model \mathcal{D}^{e} by adding $e_{\text {clone }}$.

Variable assignment v^{e}

(1) $v^{e}(x)=\mathbf{i n}_{\tau(x)}(v(x))$, if $x \neq y$.
(2) For the variable y,

$$
v^{e}(y)\left(d_{1}^{\prime}, \ldots, d_{k}^{\prime}\right)= \begin{cases}e_{\text {clone }} & \text { if } \left.d_{i}^{\prime} \in\left[\mathbf{i n}_{\beta_{i}}\left(\llbracket M_{i}\right]_{\mathcal{D}}\right)\right], \\ & \text { for } i \in\{1, \ldots, k\} \\ \operatorname{in}_{\tau(y)}(v(y))\left(d_{1}^{\prime}, \ldots, d_{k}^{\prime}\right) & \text { otherwise }\end{cases}
$$

As v^{e} simulates v we have:

- For all lambda terms $N, \operatorname{sim}\left(\llbracket N \rrbracket_{\mathcal{D}^{e}}^{v^{e}}, \llbracket N \rrbracket_{\mathcal{D}}^{V}\right)$, that is, $\llbracket N \rrbracket_{\mathcal{D}^{e}}^{v^{e}} \leftrightarrow_{\beta_{i}} \mathbf{i n}_{\beta_{i}}\left(\llbracket N \rrbracket_{\mathcal{D}}^{v}\right)$
- So M_{1}, \ldots, M_{k} are uniquely determined in $\left(\mathcal{D}^{e}, v^{e}\right)$
- Moreover, $\llbracket y M_{1} \ldots M_{k} \rrbracket_{\mathcal{D}^{e}}^{\nu^{e}}=e_{\text {clone }}$.

Uniqueness

Let $\llbracket w N_{1} \ldots N_{p} \rrbracket_{\mathcal{D}^{e}}^{v^{e}}=e_{\text {clone }}$.

- $w \neq y$ is not possible.
- when $w=y$ we get:

$$
\begin{aligned}
& \llbracket N_{i} \rrbracket_{\mathcal{D}^{e}}^{v^{e}} \in\left[\mathbf{i n}_{\beta_{i}}\left(\llbracket M_{i} \rrbracket_{\mathcal{D}}^{v}\right)\right] \\
& \left.\Rightarrow \mathbf{i n}_{\beta_{i}} \llbracket N_{i} \rrbracket_{\mathcal{D}}^{v}\right) \leftrightarrow \beta_{i} \mathbf{i n}_{\beta_{i}}\left(\llbracket M_{i} \rrbracket_{\mathcal{D}}^{v}\right) \\
& \Rightarrow \llbracket N_{i} \rrbracket_{\mathcal{D}}^{v}=\llbracket M_{i} \rrbracket_{\mathcal{D}}^{v} \\
& \Rightarrow N_{i}=M_{i}
\end{aligned}
$$

$y M_{1} \ldots M_{k}$ uniquely determined implies $\lambda \vec{x} \cdot y M_{1} \ldots M_{k}$ is uniquely determined.

Base Case

Leaf is a variable z of type 0 .

- Start: trivial model with only one element $\{\perp\}$ in its atomic set, trivial variable assignment.
- Add an extra element $\left\{\perp_{\text {clone }}\right\}$ to type 0 .
- New variable assignment assigns z to $\perp_{\text {clone }}$ and the rest is kept same.

Conclusions

- In our approach we
- define an operation of model extension, and
- explain the relation between elements of the initial and extended model.
- We work mostly with semantics, the only syntactic tool is η-long forms (and Böhm trees).

Related Work:

[Statman'82] Finite Completeness Theorem
[Statman \& Dowek'92]
[Salvati'07] Using intersection types

